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ON TWO DIMENSIONAL INCOMPRESSIBLE STEADY

STATE FLOWS WITH SEPARATION

by
Alexander Pal

Polytechnic Institute of Brooklyn

ABSTRACT

The subjects of this study are two-dimensional incompressible steady
state flows which have constant vorticity (w) in a domain N bounded by a
closed streamline and are irrotational in the com;lementary part P of the
flow domain, and such that the streamfunction y(z) (z = x+iy) satisfies on

the boundary vy =3 P13 N Bernoully's law

2 2
(1) '-2-3) - (—:—E) = XA = constant > 0.
A3 p N

According tn G.K. Batchelor such flows (below called '"Batchelor-flows'')
may be models of laminar flows exhibiting separation phenomena in case of
high Reynolds numbers.

Let f(C) (C =2 + in) denote a regular function in the domain E:
n > 0 ("open flows') or 0< n< 1 ('channel-flows') which is O\lfl) as
|¢] ~ =, and such that on 3E
(a) |£' (€) | is bounded away from 0, (b) is even in § (c) non-increasing
if £>0, and (d) £'(),f'(C) satisfy HOlder - conditions and have finite real

limits as € - ®,



The existence of Batchelor - type flows in the domain A = {(E),
bounded by the streamline(¢) ¢ = 0 and in case of channel flows . = 7T is

proved by direct methods of variational calculus. In particular, let

(V] = LJ'{V[t(IK))]}ZdEdn .

Li4]=-2 “ Wz)axdy, ALl =[] axay .
¥(z)< O $!z)<0

Then, if u(z) is an arbitrary function for which these functionals are finit.,
the problems

(1m) Tlu) - X Alu] = min.
(k and L[¥] = m> 0 given parameters)
and

(Iv) Tiul - X Alu] - w L[u] = min. ,
(k and w > 0 given parameters) » have solutions which can be considered
stream functions of the Batchelor - type, if only » (and ¢ in casc of
problem IV) satisfy certain reasonable inequalities. The region N is thin
defined by the condition {(z)< 0, { the solution of problems IIl or IV. The
flow is asymptotically uniform at large distances. Further properties of
the s»olution: vi!(f(C)) is an increasing function of || ard evenin®. The
sets NUAN and P are simply connected and 3N contains a finite arc of
3A. For solutions of IV or if f{{) / { = const., (straight boundaries of ")
N itself is connected.

Applying the minimum - principle to special variations of . near 3P,

ii



>
it is shown that if z converges in P to the | = 0 streamline, then

lim inf |9y| > %

Consequently Y is rectifiable. By analytic variations of the domain it is
shown that § and N satisfy an integral equation similar to the one found
by P.R. Garabedian and D. C. Spencer in the case of cavitation flows.
Properties of the solution, such as boundedness of N and that the matching
condition (1) is satisfied along Y almost everywhere, can be deduced from
this integral equation.

Solutions of III are never ''trivial'', i.e. the domain N is never
empty. Solutions of IV are non-trivial if A exceeds a limit dependent on 7.
Such solutions exist unless A has straight boundaries.

The set of solutions depends continuously on A,X and ¥ or m.
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Most frequently used notations.

A the physical flow domain in the plane z = x+iy, bounded
by a streamline 8 in case of open flows, and the stream-
lines 3, 3’ in case of channel flows.

E: the halfplcone 0<n for open flows, the strip 0< n< T for
channel flows of the {-plane. ({ =8 +in).

C=gl(z) the analytic function mapping A conformally into the half-

plane or strip E, See for details Section 1.1,

z=£f(C) the inverse of g(z).
aut o =lf(@), u=int{lg(2) *:2en |
A, M: A o=1/a%, M=1/|f(0) 2 .

If u(z) is a function in &, S a subset of A, then
a(€) =ulf(C)) ,
=g(S) .

u+( z)’u_(z) the positive and negative parts of the function u (z).

142}

Plul Olul,N[ul: for any function u(z) the subset of the interior of the
domain of definition of U, where 4>0,=0,<0 respectively.
Qlul=nN[ulVoO[u],
Y, T v=3pPaN, T=3P-3’,

(For open flows B’ is the empty set. )

S, Int (S), If S is any set, then S is its closure, Int (S) the interior
mes(S).mesl(S) of S, mes(S) the plane measure of S, mes,(S) its linear
measure.




| g

Functionals:

Dlu,v]s]

D[ulS]

T[ul S]
L[ulS]
T{ul, L{ul:

Alu]

As or A(S)
Viul
V! [u)
Wlu]

A, m, L

Function Spaces:

7

D
7P"DN
ZL(m)
# Jl+ M
S

If S is an open set, u,v functions in S, then
=_” Yu Vv dx dy,

S
=D(u,us],
If u(z) is a function in A, u(z) =u((), then
D[ G-“l g] ’

-2'”8 u (2) dx dy.

If S is not specified in these functionals, the integration

should be extended over the entire domain of the func-

tions involved.

=”Q[u] dx dy.

But:

is the plane measure of the set S,
=T [u] -1 Alu)

=Tlu,]- mZD[u_]/L[u_]Z -2 Alu)
=T [ul-2Alul-yLlu],

are specified positive constants,

: See Section 1,2
" " 2.1
" " 2,1
" " 1.3
" " 2.1

" " 2. l



INTRODUCTION

The problems connected with wakes and ca ‘lies appearing in
fluid flows have stimulated a great deal of applied and pure mathema-
tical research since Helmholtz described a mathematical model of
cavitational flows, An impressi.e body of mathematical results is
available about incompressible irrotational cavity flows. In the plane
case, the shape of the cavity can be obtained in special cases by con-
formal mapping techniques; (cf. e.g., Birkhoff- Zarantanello: Jets,
Wakes and Cavities, 1957) and even in the more difficult axially sym-
metric three dimensional case an explicit solution was constructed by
Garabedian (1954). The existence of solutions of flows with cavities
behind more general obstacles was shown in the plane and axially
symmetric cases by Garabedian and Spencer (1952) and by Garabedian,
Lewy, and Schiffer (1952) respectively. Uniqueness of solution is
proved by Gilbarg (1952), Serrin (1952). Integral equations are derived
by the method of interior variations, and it is shown that the free bound-
ary is an analytic curve, For an extensive bibliography of cavitation
flows, see Gilbarg (1960).

The model of flows with cavitation has been widely applied to
problems of wakes behind obstacles, This practice may be objected to
on the basis that in cavity flow the velocity is constant on the free bound-

ary,; however, adjacent fluid particles of the wake region would de-




aelerated the neighboring free stream particles by viscous friction,
Admittedly, for unbounded regions there is no assurance that for

large Reynolds numbers, R, steady state solutions of the Navier -

Stokes equations exist at all, but if 'such a solution exists for R
so large that the singular perturbation method of boundary layers
is applicable then this solution is probably not well approximated
by the cavity model.

The assumption that the flow is irrotational is in general
justified by Helmholtz's vortex-theorems, in any region covered
by streamlines originating in infinity. Indeed, in the Lagrangian
frame of reference the initial condition of zero vorticity for
t = - co implies no vorticity anywhere along the entire streamline.
However, if the flow domain contains a region covered by closed
streamlines, then a non-viscous flow becomes indeterminate in
this region. In fact, arbitrary constant vorticity may be prescribed
along each closed streamline dependent only on the value of the stream-
function y. This indeterminacy is of course merely a recsult of the
excessive idealization implicit in the Euler-or Lagrange-equations.
The indeterminacy disappears if steady state viscous flows are con-
sidered for a given set of boundary conditions, such that the Reynolds
number R of the flow converges to . Batchelor (1956, 1957) pointed
out that in the Z-dimensional case under such circumstances a limit
flow may exist, containing regions bounded by closed streamlines, in

which the vorticity is constant (eddy regions) and outside which the



flow is irrota.tiOnal.* The eddy regions are separated from each
other and from the outside irrotational region by slipstreams
(streamlines of velocity discontinuity) which are the limits of
boundary layer type velocity distributions. The velocities :1‘1 C

ae on the two sides of a slipstream must satisfy Bernoulli's law,

and therefore along the i - th slipstream

3 2 _
M o] - |az|* = 2y
on each slipstreamline, In the simplest case both the eddy region

N and the irrotational region P are bounded by the domain-boundary
and a single slipstream Yy, so that (1) can be written as
-~ 2 - 3

@ |apl - |qu =\
along Y.

In contrast to c avitation-flows, little is known about Batchelor
type separated flows. Goldshtik (1962) proved the existence of such
flows for A=0 by methods of functional analysis in bounded domains.
He also showed that if the vorticity W in the eddy region exceeds a
certain value wo then at least two solutions exist (other than the
trivial solution with no eddy region) and that for W - WO no solution
other than the trivial exists. Childres. (1965) investigated the A ~. 0
case with the asymptotic approximation of slender eddies, and
found a simular bifurcation. To my knowledge no rigorous existence-
proof exists for the A >0 case, and no special explicit solution for the

unknown boundary Y, although both Goldshtik and Childress give numerical

“See also Prandtl (1961).



results under the special assumptions mmade in their papers,

Mathematical description of the separated flow-problems to be

investigated.

Let us introduce the streamfunction ¥ (z), (z =x +1iy) in
the flow-domain A, which is simply connected open set bounded
by one or two streamlines extending to infinity*. If - is bounded
by a single streamline 3, we will talk about an open flow, in the
case of two streamlines (B,p') about a channel flow. (This is not
intended as a complete definition of the flow domain; 2 will also
be required to satisfy certain additional conditions, which allows
Steiner symmetrization of the streamfunction ! (z)., More precise
definition will be given in Section 1. 1). It is assumed that - is
simply covered by streamlines, hence | (z) is one-valued on the
Riemann surface in which £is embedded. The eddy region N=N[-,]
is bounded by P and a slipstreamline Y. We assign the value
v(z)=0to B and y. In the simplest case Y is the only subset of . in
which §y (z) vanishes. Thus, for positive vorticity in N, v (z)~0 in N,

and y (z) >0 in P[‘v‘]= A -N-Y. v (z) should satisfy the equation

(3) "%y = 4.8 (v)

It will only be assumed that 4is locally schlicht. Thus it may cover
multiply a plane domain without branchpoints.



in 4, where s () is the characteristic function of N [Q’] Further

¥ (z) should be continuous on § (and B'), and assume the values of 0

on B (and ron B'), If the set N is bounded (as it will be proved for
almost all cases), the asymptotic behavior of y (z) is (up to a trivial
factor in the case of open flows) determined by the geometry of -,

This will be discussed in Section 1. 1. On Y in addition to the condition
¢ (z)=0, we have the matching condition between the normal derivatives

of § on the two sides of Y :
3

3 X,
(4) 3'?;?'37

obtained from (2).

"
>

N

The purpose of this paper is to prove the existence of a two
parameter family of flows in the given domain 4 which satisfies these
conditions. (The two parameters are ) and either the vorticity w or
the angular momentum m of the wake region.) As a side result minimum-
principles will be derived of which the streamfunctions are solutions.
These minimum-principles might prove convenient in the numerical so-
lution of the separated flow-problem. They also offer interesting analogons
or extensions of the energy-principles of potential flow theory.

The xS_O case will not be treated because it is felt that it has no
physical importance. In fact, X < 0 would correspond to flows, in which

Iap.g laNl along Y. In such a case the wake region would continuously loose

kinetic energy in the boundary layer along B, which would not be replaced

through the boundary layer along the slipstream Y.



It also should be observed that in case of channel flows it is in
general unrealistic to assume that a viscous flow with high Reynolds
number remains everywhere approximately harmonic in the vicinity
of ', Rather, eddy regions can be expected adjacent to both } and B'.
It would be easy to allow eddy regions bounded by § =1 streamlines;
but this is for the sake of simplicity not done here. Nevertheless, if
B' is straight, we get a realistic flow by reflection of ~and ., (z) on B'.

This paper will have four parts. Part [ contains preliminary
results, including the formulation of the minimum-problems. Section
1.1 discusses the flow domain, Section 1.2 introduces a functional
analogon to the Dirichlet-integral and the virtual mass, and together
with section 1. 3 discusses the properties of this functional. Section
1.4 defines related minimum-problems which are formally equivalent
to the flow -problem just described. In Sections 1.5 and 1. 6 both neces-
sary and sufficient conditions are given under which the functionals
appearing in the minimum-problems have lower bounds,

Part Il contains the proof that the minimum-problems chosen for
investigation have solutions. In particular, 2.1 and 2.2 contain pre-
liminary lemmas on the equicontinuity and lower bound of admissible
functions. 1In 2.3, 2.4, and 2.5 it is shown that if the set O=0[;Jc-
where | vanishes, is a givenclosed set, then the so obtained ""restricted"
minimum-problems have solutions, which satisfy (3). Further lemmas
needed to clarify the limitations on the vertical and horizontal spread

of the eddy region are in Sections 2.6, 2.7, and 2.8. Finally, in 2.9



it is shown that any minimum-sequence of adimissible functions contains
a subsequence converging to an admissible function, which is thus the
solution of the minimum problem.

The unboundedness of the flow domain makes this proof more com-
plex. In the theory of cavitation flows this difficulty is circumvented
(see Garabedian-Spencer (1952)) since domains considered there permit

Steiner symmetrization relative to both the real and the imaginary axis

accompanied by a decrease in the variational functional involved. In the
present problem only Steiner symmetrization relative to the imaginary
axis will be applied. Therefore additional tools will be needed for the
proof of the compactness of the set of competing functions. This is pro-
vided in the fundamental lemma 2.8. This lemma essentially states that
if a function + (z) has its support of finite area A in parallel strip S of unit
width, and has a finite Dirichlet integral D, then a unit square subset
S*CS exists, such that

rr - k r 3
U(z)dxdy {> —— 3 ¥(z) dxdyi
I'Js" | “2p ISJ

where k is an absolute constant.

In Part III the topological properties of the solution will be investigated.
In particular, it will be shown that the domain P is simply connected, the
set N is the disjoint union of simply connected open sets (Section 3. 4), the

set N is connected. * This latter result is based on the theorem, interesting

%
1 did not succeed in showing in all cases that N itself is connected.



in itself, that in a two-dimensional potential flow around an obstacle

B which is free to move without rotation, no equilibrium position of

B is possible unless B touches the flow boundary. In particular, it
was shown with the aid of the investigation of Schiffer and Szeg'cl) (1949)
on the properties of Green's function, that the virtual mass as a func-
tion of the position of B is a superharmonic function., (Section 3.1)., It
is further shown by application of the minimum-condition to certain
restricted variations of the positive part of the stream function, that
the gradient of the latter has in P a positive lower bound (Section 3. 5).
From this follows easily (Section 3. 8) that the boundary y separating
the regions P and N is rectifiable and that the boundary of N contains
an arc of B of nonzero length., (Section 3.6). It also follows that the
minimum-problems considered have ''non-trivial", i.e., not every-
where irrotational solutions in given regions of the (w, 1) plane (Section
3.7).

In Part IV a variant of the method of interior variations of
Garabedian and Spencer (1952) is applied to derive an integral equation
for the solution and the curve y. The method is applied in a halfplane
or parallel strip conformal image of &, rather than in O itself; this
results in a simplified calculation and somewhat more explicit form of
the integral equation. (Section 4.1). This integral equation is used to
show that the matching condition (4) is satisfied almost everywhere on
Y (Section 4. 2), and that the eddy region is bounded (Section 4. 3). The

remaining sections contain results on the connectedness of the eddy region.

10



In the derivation of the matching condition a difficulty not encountered
in works on cavitation flows is again the lack of the twofold symmetrization,
and that the boundary Y is probably not an analytic curve; in any case,
analyticity could not be proved. Although Y is probably smooth, this could
not be proved either. Nevertheless, results on the boundary behavior
in the theory of the functions analytic in the unit circle, in particular some
theorems of Fatou, F. and M. Riesz, and Privaloff helped to overco.ne

this difficulty.

11



(1.1)

PART I. FORMULATION OF THE MINIMUM PROBLEMS

1.1 The flow domain., Let (=g (z)({ =€+in, z=x+1iy)denote

a function analytic in & which maps & in a locally schlicht manner into
the domain E, where

E is the 1 >~ 0 halfplane for open flows,

E is the strip 0 <n <7 for channel flows.
We may impose the additional conditions that the line p must be mapped
into the open real axis, and for channel flows, the line B' onto the open
line N =n Thus z = 0o is mapped into ¢ = co, It is clearly no restric-
tion of generality to assume that § contains the origin of the z-plane.
We may then normalize g (z) by setting g (0) = 0, and in the case of open
flows, g' (o) = 1. The inverse of the finction g will be denoted as

z = f ((). Only such 4 will be considered, for which

(a) £ (C ) is an even function of £ and { (0) = O,

(b),f’ (¢ )lis a constant or a bounded decreasing
function of |E| 2

(c) £f* (C ), £'( € ) are bounded in E;

(d) £* (C ) and {" (¢ ) have finite limits if IQI-ooo (along any path),
and the former limit is non-zero.
Let us consider now the boundary values

f1e5) (% real)

(%) =1log

and in case of channel-flows

o *(2) = loge* (5+i")| '

12



(1.1)

It will be shown that p( & )(and p”(lg)) determines f ( £ ) uniquely,

and in case of open flows find sufficient conditions that the function
P(2) may define an admissible domain-function.

Proposition. The admissible domain-function { () is uniquely
determined by the boundary values oflf' (¢ )| on 3E. u] f(E+in )|
is a non-increasing function ofl glon the boundary, then it is constant
or decreasing in E.

We note first that ' ( () is continuous on 3 E, becaueelf" (¢ )[

18 bounded. Then uniqueness of the harmonic function log lf' (¢ ),is a
consequence of the Phragm'en-Lindel'c;f theorem and the maximum-
principle for both open and channel flows. loglf' (s )lthen determines
ph f' ( () up to an additive constant '(to be obtained from the symmetry
of & to the imaginary axis). f'(C ) determines then f ({ } with the ad-
ditional condition f (0) = O.

If it is now assumed that lf' (€ +in) l is a non-increasing function
of I% | ond E, then the harmonic function Re{ " (¢ )£ (¢ )} has non-
positive boundary values on the real axis, is zero on the imaginary
axis;and bounded in the right half of E, Therefore by the maximum-
principle

Re { £ (C)/ £ (¢)}= a—ag—log]f' (¢)go

in E, where the equality sign holds only if f' ({ ) = constant. Hence

,fl (8+in )I is indeed a decreasing or constant function of lg I with

limit a > 0 for |g]~ co.

13




(1. 1)

The functions f' ({) -a, {'"(¢), analytical in E are there bounded
by Poisson's theorem, being defined as Poisson's integrals, with
bounded boundary values. Since they have zero limits on the boundary
for £~ oo, by the Phragm'en-Lindel'c;f theorem

lim |f" (5)|=a

- o0
and

lim |[f* ()] =0.

Iof-

Theorem. Suppose that the function ¢ (£ ) is even, non-increasing if

£ >0, and has a limit p (o) for £ ~oo. Let the functionp (£ )-p (oo0)

and its first derivative P' (£) belong to some space Lp (-oo0, oo) with

p >1. Further it is assumed thatf (£ ), P'(£)€Lip v’ i. e. they satisfy
H'c;lder conditions

(1) le(g+h) -p(e)|<Kh",

(@) lr@E+n) -o(B)|Kh"  (0cve.

Then the relations
p(€)

oyt

(3) logf (C)=m
-0

(4) £ (0) = (0)
define an admissible domain function f( 7) in E: n » 0, such that

lim £ (¢) =eP®)a 50,

ls*"oo

14



(1. 1)

In fact, the real part of (3) is a Poisson-integral, and p (8)
is continucus on the boundary whcere it assumes the boundary
values ¢ (£). The Hilbert-transform 0(f) (cf., Titchmarsh, 1937,
Chapter V) of p (§) - P () also belongs by the equivalent of Privaloff's
theorem (see Zygmund (l959)§ 7.5) to LipY and Lp. Therefore,

0(5)~0as £~ . Furthermore f' (£) has a limit for n -0 and

lim Imlog f' (§) =0 (£)
n—0
or
lim log f' ({) =1log f' (8) =P (&) +io(E),

nd0
and

5) Mm £ (8)= ef (@) g,

€~o0
By differentiation of (3) with respect to £ and subsequ.nt inte-

gir~tion by parts . -

' (¢) _ 1 P (8)-P (o) ,. 1 p' (8)
(6) )~ 'ﬁ'f 5-c73 48 'n—i‘f 5o d8
Q0

-Q0

for n—0 . Since ' (9) belongs to Lp and Lip , we find by repe‘ition
Y

of the previous argument

Hm o £0(C) _ o (e)4iox(E)
0 g o(¢)

where © *( €)is the Hilbert-transform of p' (£), belongs to Lp

and LipY. Thus
Hm £ (r )/ (r)=1" (e )/f(5)

n—0

15



(1.1)

also belongs to Lp and I.,ipY . This implies by (5)

lim £ (£ )=0.

'-‘
g0

Thus it is proved that (c) and (d), are satisfied. The symmetry condition
(a) is satisfied because the boundary values are symmetric and they
determinz f (v ) uniquely as a symmetric function; that (b) is satisfied
was proved earlier,

A formal analogon of (3) for channel flows is given by

Qo
1 1 1 -
M ‘°8f"”’=?rf 3—9'—_ * —1+—$ plo)d
e -1 e -1

0
Qo
, 3; + io*(e)da
U 0 € “+1 € +1

o -8 -8 o
- *
nl\f ,e coshr o (8 )+ e + cosh¢ p(ﬂ)‘de
0

cosh 8 -cosh r cosh 8+coshr

where P (£ ), p* (2 ) are the boundary values of loglf'( o )Iprescribed
onn=0, n="respectively.

It seems likely that if P (§ ) P*(g ) satisfy suitable differentiability
and integrability conditions, then (7 ) defines an admissible domain-function
for E: 0<n <.

We note that the half plane and the parallel strip are examples of
admissible domans. These domains, which can be described by 4 = E,
f(C)=1C, are particularly interesting. Any non-trivial solution III, IV,

for such a domain describes a separated flow without apparent ''reason"

16



(1.2)

*
for the separation, since the boundary of & is straight . Such solutions
will be called free eddy solutions.

1.2. The e:tension of the concept of the vi rtual mass. It was shown

by Garabedian and Spencer that the existence problem of Riabouchinsky -
flows can be tackled by solving the variatiomlproblam of minimum vir-
tual mass. Let ® denote a smooth curve in the upper halfplane joining
the points a, b of the real axis. * and the real axis bound a domain B, .
B, and its mirror image in the lower halfplane form a domain B. The

virtual mass of B in a flow uniform at large distances is defined as

(1) v=ff[\7(w-y)]°dxdy
z-B

where V¥ is harmonic in Z - B and
{=Im(z+alz+...)

in the neighborhood of co. Then

(2) V+Ag=2Ta

1
where AB is the area of B. (cf. Schiffer-Szego (1949))

We have to introduce a few notations to be used through this treat-

ment :
If S is an open domain, u (z), v (z) functions then
_ du dv du dv = du dv .
S S
*

However, it is possible to reflect the flow into the lower halfplane,
and assume that the eddy is caused e.g. by a flat plate of suitable
length and position on the real axis.

17
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D [uls)= D[uuls].
If S is not specified, then the integrals have to be extended over the

domain of definition of the integrand. Thus e.g. if uis defined in <,
b i
D[u]= 4 —| dxdy = ld?dn

We cannot apply the concept of virtual mass for j;eneral domains

in this form., It can be applied, however, if the integration is extended

over E rather than over A We define therefore the functional
S 3 .
(3 T[u]ﬂ (% [8(¢)-n])® a5 dn=Df- 1)
E

where A
u(z)=u(C)z=1(C)
T is certainly defined for piecewise smooth functions u, for which
ao(;)=“- outside some circ':, If these functions form the space 7',
then T[u]is defined further for all elements of J, the closure of J'
in the Dirichlet-metric.

A A A A

Let O=0 [u]denote the subset of E where u = 0, and suppose O is a

measurable set in the plane measure. Then by defnition

. A A
4) T [u) = D[G-n|E-0O)+mes (O)

an identity analogous to (2).

18
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Let 57 _ denote a family of open subsets of E for positive
values of r such that
"‘s T, if s <r

and o
Uz,-
r=

o
For open flows = may be the half circle {|c f<r, n>0 }o
for channel flows the rectangle-domain ( - r,r) x (0, ).

By Green's identity

{5) T[u]:lirr:D;D[ﬁ |>;r]+ Ref (20 - n)d ¢ z
. r—.
T

Suppose now that a (C) = v (¢ ) outside some open bounded

set 0, (u, v€J). Then from (5)

6) T [u} T[v}= b [ala)-D(¥|n]
In particular, if 2 =0 for zéﬁ and $=00onkE- (1, then
T (] = T[u}t DO|a].

or by (4)

(8 T[v]=5[-q|E-a)t D[VIn)+mes 7.

If v (z), v (z) denote the positive and negative parts of v(z) respect-
ively. and Pls the set where V(C) > 0 then (7) and (8) can be given the
form

Tlv]=T[v,]+ Dlv_1=D[$,- n|P1+Dlv_] + mes (E-F)

A "

This identity remains true even if Q = E-P is not bounded but
has finite area.. In fact we can find a sequence of functions’ K such
that v =v in P v_=0 in Q Q where Q is an open bounded subset of Q

1

and the sequence an approxzmates 7 in the Dirichlet-norm over Q

19



(1.3)

A

Then ( 8 ) holds for each pair (vn, 7i), hernce in the limit for (v,Q ).
Suppose that /=E is the halfplane y > 0 and the function § is

harmonic over its support A - O, and O is a domain bounded away from

o. Then for open flows

(99 T([y] =ra.
where 2 is the mass-coefficient defined in (2).

An analogous result holds for channel flows. Suppose that & = E,
¢ €J, and y§ is harmonic in its support 4 -, and () is a set bounded
away from B' and from infinity. Then

y=Im (z+k+)+0 (e ~ X ) as|x|-.i00.
and we find easily—by Green's identity
(10) T[w]=n Re ( k+-k_) 5

1.3 Variation of T [ﬂ We will derive a further identity expressing

the variation T [Wf -T [‘1’] for functions {, \'J* in harmonic over their

supports D, D* respectively, First let E denote the halfplane n5 0. We
assume that D, D* contain the outside of some half-circle Cr:{lf' <r, n>0 } .
Then V¥, W* are imaginary parts of analytic functions § (), o (r) respec-
tively. By reflection 8 (z), 6*(z) can be extended into the n <0 halfplane.
Then 6 (z), 9*(z) have first order poles i.. infinity:

O(c)=ctctdt. ..

(1)
e*(;)=(+c*+°;-+. 0 o

20
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(c, c* real) By Green's identity

(2) ffV'w\.J?*dgdn=f$3

<>

X
Yoy f R ds
DADNC_ »D* 3C_
A a’q\;* PO * -3
= WaTds+-z-r+—z-(a-a)+O(r )e
o *
Interchanging ¥ and ¢ * yields
& ffv@v@*dgdni/‘@*%l—ds";— £ .2 (a*a)+o 7).
pAD* N C_ ab *

Sub tracting the identities (2), (3), we get

j *3__31’ ds- fwﬂ

ds =T (a -a)
an
aD*

Therefore, by (1.2.9)

A
I\* d Aav*
T[w*] - T[a']= W B—n ds- A ¥ ﬁ ds,
3 D*
or . A
A A A *
v*- '1=- . f.* Ay . f QY
T[v*])- Tlv; 21’ *srd A W-B.Z d¢
> B 3D *

This identity is clearly invariant to confarmal mappings, hence

%*
@) th- tlv)- -Zigﬁ* g-i dz -fv g-:_ dzi

3D*
It can be shown similarly that (4 ) is valid for channel flows as well
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1.4 Minimum-Problems. We introduce the functionals A [lg the

area of the domain N [u]; (u = u (2) real):
A [u]:ff dxdy,

uiO

L[u]= - fou(z)dxdy.

The quantity L (u_) has an interesting physical meaning. A

and

simple computation shows that if 73; =W inN [v], then L [v -]is the
angular momentum of the flow in N[*’].

We will also use the notation

L[u‘ S]= s L[u (z) dxdy
S

where S is an open domain.

Definition. The dasses of all continuous functions u (z), such that
L [u-]= m will be denoted as £ (m),and the class for which A [u]= b
as f3 (b).
We will also use the notations
IBE) £ (m)=0 p,m)=a,  *
J B (b) =) 24,
9L (m) Apylm) =2y,

Minimum problem 1. Find a function / ':01 (b, m), such that for any

u 601 (b, m),

T[V]: T[u].

Fy
H th otation
ere the n UV e UNV

was used. (U, V are arbitrary classes of functions)
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A weaker version of this problem only requires
6T[u]=0ifu='#, (uéal)

or more precisely,

A lr e,
for all v = v (z), for which ¥ + Oy eaIfor all sufficiently small values
of |8]. (Variational problem I, to be distinguished in the future from
minimum -problem I.)

If we introduce suitable Lagrange multipliers, other equivalent

variational problems arise:

II. 65U [u]= 6{T[u] -wL([u]}=0
if uedfb);

IIL. 6§V [u]ef6T[u]- 2 Afu]}=0
if ue€gf(m);

v. 6§ W [u]= 8{T[u)- wL [u]-2A[u]}=0
if ued .

To each variational problem we can formulate a corresponding
minimum-problem. We cannot expect however these minimum-
problems to be equivalent to each other,

There is an equivalent formulation of minimum-problem III.
Given any function u (z) € J, we set

u (z) ifu(z) >0

Y () = u (z) if u (z) <0.

RIS
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Then u (z) : 7.L(m). Thus III is equivalent to III' :

Functional minimized:
v! [u]= T [u] - y A [u]
= Tfu)+ m Dfu]/L[u]?-r AlYd,

where in the second equation the identity (l.2.7) was used.

Constraints: None.

Giv

en Data;: m, A

Competing functions: 7 ,

(1.4)

An equivalent version of I can be formulated similarly. (See

Table 1.)
Min. Functional Paramaa'sl Space of
Problem | Minimized Constraints Given Admissible Functimn
1 T [u] L [u} m, Afu}=t{ m,b (lI (m, b)
2J./(m)p3 (b)
1 T'[u]= T(u,) Alu]=b| m,b a;(b) (), (b)
#m' Dfu-]/ L[u-]? =78 (b)
== =
11 U [u)= Tlu)w L [u ) Alu)=b| w, b a. ()
-— T
L \ [u]= T[u]-) A[u] L [u] = m m, A UIII (m) =77 (m)
r vt fo]=T' [u]-r Alu) | -- m, A Ay =ty =7
v w[u)= T [u] -\A[u]-w L{u] oo w, A aIV =d
Table I.
24
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(1.5)

1.5 Lower Bounds of the functionals T, U,V, W, First step in solving

any of the minimum-problems I-1V is of course to establish the existence
of a lower bound of the functionals, the minimum of which is asked for,

For allu € 7 , T[u] > 0 by definition. To find a lower bound
for U[\J, uce€ an (w, b), we first have to prove a

Faber-Krahn-type inequality. Let u (z) be a function such that

u has a finite Dirichlet-integral and its support S has a finite area AS.
Then
(1) a [u) = Ac D[u]/L[uf> 27,

where
Lu]- -fou(z)dxdy

Equality holds if and only if S is a circle and u satisfies there

9% = const. in S,

u continuous everywhere, i.e.
u = Amax / l-lz-zc’la , 0)
where #is a real constant, z, fixed.

For, it is clear that Schwarz symmetrization of the function u (z)
around z_ leaves L[v’] and AS invariant., On the other hand it is known
that (see Pélya -Szegg 1951) Schwarz-symmetrization decreases the
Dirichlet integral of |, hence the result.

By the inequality (1)

U [u] > D [u_]-w L [u_]

2 Lul?
> 7?[3?&1—] -wL[u_]Z --é-”—f-r A[u]a= --gw? ba
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Hence: U [u]has a lower bound br u¢ I dependent only on b and
%, This also implies that V [u] and W [u]always have lower bounds
depencent on (), m) or (), W) only if the area of A is finite.

We will show now that W is unbounded from below and hence
IV has no solution for open flows if {' (()-1 as lgl -, Letus

+ . A _
define for r > 0 the functions u (z) = u_ (c). We set¢ =0 2r,

Im{c-2r+t4r2/(C - 2r)] in P - {c: ' C-Zr'> 2r, n >0}

S <[4 - (24) £]? - Ain N ={C :|C- (2¢idr| <}
0 h16==E'-p-ﬁ.

Clearly ur(z)ei . Infact by (1.2.7)

A A
T [ur]: 4n ra + D[ur| N]: (TT/16) (.l,)a ra+ 4 ﬂra.

Further
L[(ur)-] 2 M, ffar (c)degdn=(n/8) M_ wr'
\
where N

M_= inf {|f' (0N |C - (2+i)r) <}
and similarly
A [ur] <M r?,

Hence

wle] < (nn16) w? r'(1-2M_) + (4-0) r’

With r-oo, M_~1, hence W [u_] - -m.
I

r
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(1.5)

We will investigate now the existence of lower bounds for
\Y% [u] , W [u] in general. As before, we will use the ndations
a=1lim ()]

:’..a,

and
A= l/aa.
In addition we set
X =a® M=)/,
_ 1 W (2
Y -TZ—(FA')

We will consider only ) > 0, i.e., X > 0.

Definition, Wewill say that a minimum problem III or 1V is well-
posed, if for any set SCﬂIn (m) oraIV in which V [u. W [u]
respectively are bounded, A [u]is bounded uniformly for u ¢ S.

Proposition. If IIl is wellposed, then T [w]has an upper bound for

y e S dependent on sgp V[y)alone. Obvious.

If IV is wellposed, then T[w}\as an upper bound for § ¢ S, dependent
on sgp W[w] alone. In fact, if A<B and W[W](Q for §y ¢ S, (A=A [\b])

D J-wL[v]< U] Wiltx A< 0 +B,
where B is dependent on (Jalone since problem [V was assumed well-
posed. Therefore by (1.5, 1)

2n (L [1.]/B)* -wL[< o+ B,

This inequality iimplies that

3
L[v])< %[w+{wa+ 8n (0 + B) /B } 1/2].

27



(1. 6)

hence from T[w] =V[V] + w0l [W-] »

T[]J< 0+B+

w 3 Q+B , 1/2
= B o et v 8 5 7

1.6 Theorem on the existence of lower bounds for V [u] . W Iul c

(a) For both open and channel flows, it is necessary for the existence
of a lower bound for V [u] overaln(m) that X < 1, and it is sufficient that
X<l

(b) For open flows W[ u] has no lower bound overaIv = dJd (at
least if a > 0 as postulated)

(c) For channel flows, it is necessary for the existence of a lower
bound of W [u] over alv ihat
(1) X<land Y< $ (X),
and it is sufficient that
(2) X land Yc ¢(X),
where Y = §(X)represents the envelope of the family of straight lines
@3 x+8¥=p=, 5 crcg.

(See the figure)
(d) If X <1, then problem 1Il is wellposed. Similarly, if in (c)
- the strict inequalities (2) hold, then IV is wellposed. -

Proof. We will prove (a),(c),(d) only for channel flows, since the proof

for open flows is entirely similar. (b) was already proven, hence it will
be sufficient to examine V [¥]and W [V]only for channel flows. Let us first

establish sufficient conditions for the existence of lower bounds.
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(i) We introduce the functionals

n
D‘[v]'-' f ag j (%‘5’)2 dn<D[v],
-0 [o]

T, [u] = D,[u-fﬂ< T [u)
and the function H = H (£ ) the measure of the supportof u. (§ +in)

for 150, fixed 5. We find by application of a trivial modification of
(1. 2. 6), (1.2.7).

A
(4) T, [“+]=/ (g—% - lf dgdﬂ+A6 .
B

34

(5) T‘ [u]: T‘ [u+]+f (17) dg dN = T‘[u+]+D‘[u-].
A
N

Let us reflect 4 on the real axis, and apply subsequent Steiner-sy.a-

metrization relative to the real axis. It is known that the integra’

7 ou, o I 35,(5 M) 4
©) Jfm-stentnz,)] - f[(—“_)] an-z[m+ H (5)]

L -n
is not increased by Steiner-symmetrization. On the other hand, we
note that L [G.]and A[G] remain unchanged by it. We may assume
therefore that the set Q [G] and G+ (5.7) are already symmaetrised,
hence G+ (2,n) is a non-decreasing function of lﬂ' . For such §

by Schwarz's inequality

Ll
A

au+ s m
(s ) dn> =
0
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Introducing this estim.ate into (6) we find

~ 2 . 2
(au+ -signa\ dn > H () .
an +) = 7 - HE)

Therefore by (1) and (5)

QO QO
3
(1 T, [u]z/ 2= d§+A8=f;iH-d€+fHd.‘f
’ -0 -0

a8 ¢)

= 7 H(f) dr
m-H{ET '

e o]

Given any function v(n)>0 of support S of measure « H, the minimum of

C[V]={Z:‘;; d’l/(fvd-‘.)a )

S

is achieved if S is the interval (0, H)and v = 1 (H-n) = v Thus
9] [v] >0 [vo]= l&/Ha .

Applying this result to the estimation of D, [u_] » we find

09 n S 0 9)
8 Dy[u]> “b[ 3[ U-(§+in)dn§3%§—=3 f%{% '
(o] -0

where
b

K=K(E)=-Z/ u_ (£+in)dn.
0
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Further @

9 L[] - -&fﬁf' ©]? “-“"’“ﬂsf pe)K (g) de,
E -0

where

2
P=P(§) =sup{lf! (§+in)|:0<nc n}.

CGombination of (8) and (9) yields
3
D, [u]-wLfu] > Z(ﬁ K? - puK) dz.

The smallest value of the right hand integrand for all values of K is

-11/12) w? pa HJ. hence

(o o]
3
(10) D, [u)-wLlfu.])> - 13 [ p(elH(8) d.
(o o]
Finally o
(11) Acfff" (€)? dgdng f p (EYH(§ de .
Q T

Combining (7) and (11), (7), (10) and (11) respectively, we find

(12) v,[ulsr,[u]-mozf (woyr -'p ) Hdg,

-

(13) wifu]e v,[u]-wL[u,]Z Z(.“I'm_ -Ap -_ruzi_pag')n‘dg.

1f (2) is valid then we can select an X' > X andincaseof IVa Y'Ss Y

such that (2) is still satisfied even in X' , Y! is substituted for X, Y.
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Since 3
lim p(?) =a =41/A’

F « @O

we can choose 7 so large that for £ > £
: )

v p (F)® <«X' (IIl and IV)
and -
YP (5P <Y (IV)

But then, with H/7 = ¢ = 0 (#), by (2) and (3)

VAR < 4 2\ ’ 1 [\‘ -

——— - A E | —— - | 2>
f\ﬂ-H Ap ) Hd,zﬂf\l_p X od o,
£ £
0 o
(problem III), and
® o«

(T w22\ 1 r_o 2y £
f\ﬂ-H-)p-l pH'Hdgz‘” ‘\I-P-X-OY/’0d1>o'
€ E
(problem IV) . Thercfore by (12) and (13)

g
o T
V> Vi[> f (== - p)Hdr
0
2 - 3.,§0,\d3’
g
o]
n o
Whi> W, [u] > &f[__g -ip ‘vpaf{a]Hd‘
0

0 W 2\ 2
2 = &TT 50 (“ + 1-2— At )FJ' ’
where we took into consideration

ple) < sup £1|( )= 2.
E
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(ii) We show that if X>1, or if Y > ¢ (X), then W[u]has no
lower bound. Let h denote any number in (0,n) and{ any positive

number. Then we introduce the functions

-(w/2A) nh-n) if Ocnch,
v(n)= ;
m '—h‘n:h if h<nem,

lifg <<l
w(B,2) = {0if €<¢-1, orz> 20+1

linear in ({-1, ¢) and in (8¢, 204+ 1) ;

ufetin, ¢)= v(n)w(g,L )+ [1-w(E.L)]n,
and the rectangle domains
R,=(t, 2¢)x(0,h), S, =(L,2¢)x ()
further the non-negative number

M =inf{lf' (C)1°: CER,}.

If Q denotes again the domain where a (¢ )=u(z) < 0, AQ its area,
then obviously

n
(14) h<AQ < h+l',

A simple calculation shows that constants C,, C, independent of {

and h exist such that

2
h
(15) T[u+] -AQ<D[V-?\ 'st,] +C & = 1+C
2
.ow .3
(16) D[u-]<D[v|R"] +C,=E=nr4c,

12A
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and that

' Myt
(17) L[u_]>-ZM£ ff vin)dédn= h *~,
6
Ry
) atalf[i0i2atan>m,n.
N

Combining Eqs. (15), (16), (17), (18) we find

V[u]= T [u+] + D [u_] -\ A[u]

(19) 2 Th
<(—s h* + = - AM h)L + C,
120
wlu]= v{u)-eL[ul]
(ZO) 3 Th e
<(l"’?a ha+m- - - M,h® A M h)Lc,,

( C, independent of h and 4 ). Since

lim [£(¢)?=a’=1/n,

lg |- o0

uniformly in 0 < n< 7, to any number ¢ > 0 we can find an 2 such that
M >—1— + e
{4 A *
We substitute this inequality into (19), and get

) Th W a A W 3o .
(21) V[u]([ﬂ_h + — h'-2—h+ (F +x)e] +C,

1 h 3 ‘
=h [y - X+ () Y]+ C, +C e 4,
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and similazly
1 h\?
(22) W[U]< h[m 'x‘(?% Y].{,"’C "‘C‘CL.

Cleazy V [u] has no lower bound if X > 1, since we can choose then a
positive h, such that in (21) the last expression in brackets becomes
negative, then fixing h, for 4=, V[u]+- c. Similarly. if X > 1or
Y > ¢ (X), then there exists a value of h such that in (22) the expression
in brackets is negative. Then clearly W [u]-. - @ asl -+ .
This completes the proof of parts (a), (b), (c) of the theorem.
Statement (d) is a consequence of (11), (12), (13). In fact, we

can write (11) in the form

(11') Aoiazj.. H(g)d¢t

By hypothesis numbers X'>X, Y >Y can be found which still satisfy
(2), i.e., such that

(23 /1) 1-X =a>0
and
(23/1V) inf {_11_ -X'-sz'}= b> 0
-p
0<p<l

2
respectively . Taking into consideration that p(g)~a as <=, we find

from (12) and (13) that a finite C exists such that
4+

V[v]zf H(%)[l—_-gév; -X']dQ-C.

4+
- 2
w[ulzf.u(g)[l—;i-:m-x’<§$1) Y']d!-c.
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Introducing inequalities (23) and (11') into these inequalities, we find
2
Aoglv[u] +C}a/a (111)

Aoglw[u] + c}aZ/b (Iv)
from which the statement (d) follows.,

Remark. From the contents of this chapter it is clear that these min-
imum-problems are not equivalent. However, any solution of a well-
posed IV is also a solution of I, II, III, with suitably chosen parameters
(m=0, b=0 must be included). Any solution of a well-posed IIl or a
problem II is also a solution of a problem I.

We will further consider only lll and IV, since attempts to show

that N has a rectifiable boundary were unsuccessful for I, II.

When we speak about III or IV, we will always mean a well-posed

minimum-problem III or IV,

Well-posed problems may be characterized equivalently by re-
placing the condition of boundedness of A [u] by a condition that T [u] be
bounded for all function u(z) for which V[u] and W [u] respectively are

bounded. In fact, by (1. 2. 4)

Tlu) = T[u)> Alul ,

and since it was assumed that |f’ (C)I has the upper bound (;, this implies

(28) A[u]= ff'(g) adgdnsuszdédnsuz'r[u].
N

alu) o)
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PART II

CONVERGENCE OF THE MINIMIZING SEQUENCE

2.1 Definitions

4, is the family of non-negative continuous functions harmonic in
their supports. #_ is the family of non-positive continuous functions u

which satisfy

V2u=x

in their supports with any constant @ > 0,

M is the set of all continuous functions u(z), such that
u,(z) = max (u(z),0) e 4,
u_(z) = min (u(z),0) ¢ 4
7(j) is the set of all functions u(z) in 7, such that T[u] <j.
J, is the set of all functicns in  having subsets of P as their supports.

P
P is the Dirichlet-norm closure of the set of all functions which have

finite Dirichlet-integrals,

Dy, is the set of all functions in b having subsets of N as their

supports.
S: the set of functions U(z) = ?U(g + in) even in £, and decreasing
functions of || in E.

A relationship betwesn D[u], L{u] and w. Suppose that ue 4 2.

Then by Green's theorem applied to u in the domain Ne = {z :u(z)< - e} (e > 0)
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ro. [r
D|lu|N =F[‘ (Vu)zdxdy={‘ uauds- uVZudxdy

L € e . 3n Je

N 3N N

€ € €

~

o/

r > = -
Sc ] rﬁds-wfﬂ udxdy=-e_” V\1dxdy+(w/2)LLu|Nt,_l
N

N N
€ € €

=-ewA(N€)+(w/2)L[u|Ne:] .

Letting ¢ =0, we find that for any u€H4_ 0.

(1) 2D (ul =w L [u] .

2.2 Elements of J (j)4L(m) and of*7 (j)JJaIv(fu) are equicontinuous.

Proof. It is sufficient to show that there are positive increasing
functions Qp (d), iN (d) such that QP (d) ~ 0, QN (d) = 0, and dependent only

on the parameters j, m or j,w besides d, for wnicn

(1) lu(z) ~u(ty ) Sép(lz-¢t])
if ze Plul, te Plul;

(2) lu -u® | 28g(iz-t])
if z e N [u], te N lul.
It is sufficient to consider only |z -t |=d <1,

Case a. By a well known lemma used in the theory of the Dirichlet-
( hY
problem, to any u > 1, there is a circle C=1z: |z - t| < p}, d<p<ud,

such that on any two points p,q of 3C
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2n D [ulCl %
(3) o (p) -u (@ & (——) -
log 4

(3) remains valid even if u is replaced by u+(z), or equivalently, if C is
replaced in (3) by c’'= cNPlul. We estimate now the righthand Dirichlet

integral in (3).

Dlu-y |C'7, = Dlu |C'] - 2Dly,y lC'] + D[y |C'].
Here

Dh,y |C’] =J udx.
ac’

However, if € € P = g (P),
a (0)<n
because of the maximum principle of harmonic functions. Thus

Dh\cq=9w|&q=nw-n|éﬂ+Awﬂ
< Tlul+ pzﬂmax | g(2) |2 <} +ul A a® .,
A
We substitute this and u = d't into (3) :

ok
lulp) = ulq) ‘f (ﬁﬁa‘r} +Ama = Qp(d)

for any p,q € 3C’, By the maximum principle the same estimate remains
valid if p is replaced by any z in C and q by t.

Case b, With the same meaning of C as before, C canbe replaced
in (3) by ¢’ =cN N{y]l. From (3) we deduce, considering also

Dly | €1 < Tlul <j (a consequence of Eq. (1. 2. 7)).
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(4) b (p) -u™ (@) | < (%)é + §u°a?,

* *
where u (z) = u(z) - % Iz-tlz. The function u (z) is harmonic in C”,
therefore by the maximum principle (4) is valid if p,q are replaced by t, z
respectively, z an arbitrary point in c’. Hence, returning to the function

u(z), we find

b
(5) fu() - i) | < (Fd) + # % &

%

We substitute now p =d <, ( d <1 was assumed) into (5), and find

'
(€) lu(z) - u(t) | < (u‘%&m) +3d = 8 (a) .

Ifue J(j)#L(m), thenby (2.1.1) w canbe replaced in (6) by 2j/m,
Corollary. Elements of the spaces J(5\#4.Z(m) and of

7V H GN (w) have a common lower bound.

2.3. The restricted minimum-problems,

Suppose that the sets P, O, N are specified, such that a \bo e
exists for which P[wo] = Ik Nwo] = N, O[Wo] =0O. P and N are deter-
mined uniquely by O,

The set of all functions u€J for which

u>0 in P,
u=0 in O,
and u<0 in N,

form a subset /° C J, We define the restricted minimum-problems III'

and IV:
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Find v € 7° such that for any u € J°
vilul > V041, ' (m’)
wlul > wly] (IV)

We define the class 7PC7° of functions v > 0 of support P, Let

'DN denote the closure of the space of continuous differentiable non-positive

functions with support N, The restricted minimume-problem splits into the

following two problems:
A) Outer minimum-problem

Find t+(z)67p such that for any u€J,,
T(ul > T(y,J,

B) Inner minimum-problem

Find v_(z)E 9N, such that for any v € QN’

plv] . DIy.] .
Tivit = If I3 =X

or

D[v] - wLlv] > DLy _] - wLly_] (Iv)

Because of (1, 2, 7) it is clear that th: function V¥(z) = ¢+(z) +y _(z) is a

solution of the restricted minimum-problem.

2.4 The solution of the outer minimum problem

We first consider the case that l; = g(P) is bounded by a finite number

of Jordan-arcs. Let W*(C) be the solution of the Dirichlet-problem for
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1; with the boundary value assignment
*
v (§)=-n

~ ~ ~ %
on °P, !J;* bounded in P. We set then W+(C) =y (C)+n. I u(z) is an

arbitrary element of 7o, thenby elementary identities

DLu*] = D[W:] + DW: -u') '
or

(1) T{u] = Tly,] +DLu- ¥,

Thus { " is the solution of the outer minimum-problem, as shown by
Polya (1947).

The more general case is that P is any open domain in E, the class
7. is not empty. We approximate P by increasing connected open domains

P

P each of which is bounded by Jordan-curves:

PICPZC... Cpkcpk+lcoo. a={gpk.

By the maximum-principle the corresponding harmonic function %n( z) are

monotonic domain-functions. For fixed z, y> 0,
(O i) . SHO S,

hence by Harnack's second theorem they converge to a function $+(C)
barmonic in P. The functions %n(z) are equicontinuous in P because of
lemma 2. 2,hence W+( z) is also continuous in P, and vanishes on dP. Let
u(z) denote any function in7p . Then u(z) can be approximated in the

Dirichlet-norm by a sequence un(z) € 7p . By Eq. (1) then
(2) Tlu ] = Ty, ] + Dlu - i

By the definition of the functions u

tim D[u -u] =0.
n~® n
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From the last equation by the triangle inequality of Dirichlet-integrals

(3) Lim T[un] = Tlul.

n—e®

Furthermore by the lower semi-continuity of the Dirichlet-integral

(5) tim Tly _J>T(y], _tim Dlu -v J>Dlu-¥).
n-—e n—®

Combining (3), (4), (5)

TCul > Ty] + Dlu - ¥] > T[]

if ut v,
We observe first that by the maximum principle

V(2020 if zeB

and therefore the same inequality applies to V in PLV). By the maximum-
principle therefore

(4) Wz)>0 if zeP,
Second, if ¥ is the solution of the outer problem, then by the uniqueness of

the solution of Dirichlet's problem T[¢] depends on the domain P alone,

and may be considered a domain functional; say,

(P].

T(4] = inf{'r[u]: ue .'ip}

1[P] is a decreasing domain functional. -For, if P, CP is an admissible

outer domain, i.e., it is open and the class 7p is not empty, then
1
I C 7p. implying that

P,

7[P,] = inf {T[ul: ue 7P1} > iaf {Tlul:ue Jp}=1(P].
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2.5 Solution of the restricted inner minimum-problems.

First assume again that N is a bounded open set bounded by a
finite number of Jordan-curves., We will prove the following lemma:

(1) For such N there is a function ¥ (z) which satisfies

(1) vy¥=1 (geN)

and
(2) VY is continuous and vanishes on 3N .

()  Let Vpp = (m/LI¥])¥(z), ¥y, =w ¥(z)
Then for any ue O L(m), ve b, ,
(3) Dlu] = DLyl + Dlu - vyl
(4) D{v] - wL{v] = Dlyp,] - wLlépy,] + DLv - 4,1,

hence *III , wIV are solutions of the inner problems III, IV respectively.

*
Proof. Let z, denote a fixed complex number, Y (z) the solution of the

Dirichlet problem for N with the boundary value assignment

v z) =- (1/4) ] z - z°|2 if ze€dN.
We set
% 2
¥(z) = Y (2)+(1/4)]z- zol in N,
Then indeed
(5) w2y =1

and Y is continuous and vanishes on ON, For any function w(z) eﬂN , and
real a,

(6) D[w] =Dla¥])+D[w-a¥])+2D[lay, w-aV)
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Here by Green's identity and by (5)

2D[ay, w-a¥l)= zaf (w-c.‘i’)-g%-ds - za”(w-aw v ¥ dx dy
3N N

= a(L{w] - LlaY]),

If we setnow w=u, ¢ =m / L[Y¥], ay= wm , then because of L{u] = m,

2Dy =¥yl =0,

hence substituting the last identity into (6) yields (3). On the other hand, the
substitutions w=v, a=w, a¥ = wIV lead similarly to (4).

We show now that the statement of the lemma is true even if N is any
open get of finite area. Then we approximate N by increasing bounded

open sets bounded by finite numbers of Jordan-curves:
v
NICN2C000 CN_v:l Nvo

Let z, be any point in N, The distance dk of z, from Nk is less than the
distance d from N, Hence, and because of the inequality (2. 2. 2), the
functions Yv are uniformly bounded. The functions

* _ 1 2

Y (z)=Y¥(2)-7]z-z2|
are harmonic. They form a decreasing sequence for any z €N, The proof

of this property is the same as for the analogous outer problem. The

%
functions Yk have a common lower bound. Therefore by Harnack's second

%x
theorem they have a pointwise limit Y (z) harmonic in N, The function
%k
Y(z) = ¥(2) + |-z |2/4

will therefore satisfy (1). The functions Yv(z) are equicontinuous in N cf.

lemma 2,2, thus Y is continuous there and vanishes on 9N, Furthermore
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(7) ¢ =Ly 1 -Llv] =2,
and because of the lower semicontinuity of the Dirichlet-integral,

(8) Dl¥] < tim DL¥ ].

) o Rl

Thus, setting \Uv(z) = (m/Lv) ‘i’v(z)

(9) "Jv(z) -‘(m/‘t) Y(Z) = ‘l’nl(z) ’

uniformly in N, wIlI is continuous and vanishes on 2N, and from (7), (8)

L) = m, DLyy) < tim DLy J.

J o~

The functions \;‘v(z) = (m//\v) Yv(z) satisfy (3) if we replace there N by Nv'
Thus
1 = ; -
(10) Dlul = DLy ] + Dlu -v ].

Suppose that u € 'DN L(m) = aN(m). Then we can approximate u by a

sequence u_ € aN (m) in the Dirichlet-norm so that
v

(11) D[uv- ul| Nj - o0, D[u\)? = D[ul.
Hence indeed by (9), (10) and (11)
Dly;) < Dlul - Dlu - ;0 < Dlul,

unless u = \Um .

The corresponding proof for problem IV differs only in trivial

details,

We observe that the maximum - principle associated with the equa-

tion (1) implies that for all n
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Y (z) <0 if zeN
n n

and therefore
Wz) <0 if zeN,

Hence again by the maximum - principle

(12) V(z) <0 if zeN,

2. 6. Estimates on the vertical spreading of the domain Q[u) . (Open flows)

If P=A-Q is simply connected then it is known that the image Q= g(Q)
has finite height if 7’[Q]) = 1(P] is bounded (cf. Garabedian-Spencer (1952)
p. 382). This is, however, not necessarily true if P is not simply connected.
Unfortunately we have to admit as admissible domains Q any closed subsets
of . The measure of the subset Qh = {C : £ eQ, n >h} can be expected
nevertheless to tend to zero as h = ® for any closed QCA, if 7'LQ) is finite.

We will estimate, therefore, the minimum of 7'[(Q] if

mes Qh=A.h>0.

t'{Q] will not increase if Q(¥] is replaced by Q,, because y is an admis-
sible function for the minimum-problem of the funciional’ T in the domain

E - Qh It can be also assumed that Qh is symmetric to the imaginary axis,
since Steiner-symmetrization will not increase TW]*. and leaves mels Qh
unchanged. The value of 7' is further reduced (or not increased) by replacing
Qh by its intersection R with the imaginary axis, because of the monotonic
dependence of J on the domain, hence the inequality

(1) ‘(@] > T'[R] .

* cf, Pollya-Szego (1951).
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On the other hand, suppose that (after symmetrization) Qh contains a

horizontal segment I = (ik - a/2, ik +a/2), (k >h). Then similarly
(2) 1'[Q) > r'l1].

We will estimatenow T'LR] and T'[I] .

(a) If wl(z) is the solution of the outer problem in E-I, v = :l -n

then by Schwarz's inequality

kL2 |
[ G5) ez peh=x
(o]

Hence
a/z s .-.* 2
(3 Tn>] &
-al2 o

(b) Similarly, if @Z(C) is the solution of the outer problem of R,

Q) = 5,000 = 1 and ¢ =1 et®, 1¥(0) = ¥¥(z,6), then
d o
[ (e <] ) =grun® =gt
0 0

Hence, let S denote the set obtained by rotating R around the origin. Then

using the estimate (4),

5 2 h+b
’ ] /‘f> dr 4 7 4 T
T[Qh]z”‘KTG- r_deZﬁJ rdrz«ﬁJ r dr
S R h
or
"~ ¥ i 4
(5) T'LQh] > =hb

where b is the linear measure of R. From (1), (2), (3), and (5)
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(@)% > 3n?an.

It "mul" denotes linear measure, then

ab = a mes, RZmeth = Ah

Thus we find for open flows

(6) Tlu)? > 7/[Q1% > (4/m1n” A _.

2.7. An all-important point in the proof of the existence ofa solution of the
minimum problems will be to show that if {*n} is a sequence of admissible
functions it is not possible that 'lln(z) = 0 in all fixedfinite domains. This will
be achieved by lemma 2. 8, which will essentially state that if Dirichlet -
integral and the area of support of a function vanishing on the real axis are
finite, then the function values in a strip adjoining the real axis are in a

sense lumpy. For the proof we first need an inequality of the type (1. 4.1),

but with milder assumptions.

Lemma 2, 7. Assume that the function u(z) defined over the rectangle

R = (0,8) x (0,h)

vanirhes on the lines y = 0, y =h, is continuous and has a finite support
area A and its Dirichlet integral D = D{u] is finite. ThenD, A and L = L[ul

satisfy the inequality

(1) L < @/m? (1 +n/me) aD

Proof. We write

u(z) = v(z) + w(z), v(z) = (x/s) u(z).
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By Schwarz's inequality

(2) Dlv] = (l/sz) ‘{ r‘[ xz (Vu)z dx dy + 2 .” x ug-:- dx dy

+ “. uz dx dy}
< {D[u]% + (1/s) (_” u? ax dy )$ }Z .

On the other hand

h h
kj.uzdy < J‘(g% dy
o o

where k = (T‘r/h)z is the smallest eigenvalue of the vibrating string of

length h. Substituting this into (2) yields

(3) Dlv] < (1 + h/ms)® Dlul .
Let us continue v(z) into the rectangle
R* = (s, 28) x (0,h)

by reflection on the line x = s. Then v is vanishing on the boundary of
the domain d consisting of the support of u and its mirror - image on the
line x = s. d has area 2a. Hence by the inequality (1. 4.1) and by (3) and

(4)
| Llvl | < (z/n)é (1+ h/ms) AD%

and similarly

| Llw] | < (?-/ﬂ)é (1+h/ns) ap? .
Adding these inequalities yields

| Llul | < z(z/n)i (1 + h/ms) AD%,

which is equivalent to (1),
2.8. Lemma. Let I denote any interval of length £, H = (0,h).
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Suppose the function u defined in the rectangle domain R = I x H has thezxe
a finite Dirichiet - integral D, vanishes on the lines y =0, y =h, and its
support has area A, Then given any s, 0 < s <{, there is a subintexval
I*Cl of length exceeding s, such that

* 3

m 1 L
(1) L >3

(1 + 2h/m8)° A°D

where

L=Llu|IxH), L*=Llu|1* xH].
Proof* Suppose that
(n-1)s <4 <ns

where n is an integer > 1. Then I can be subdivided into n parts (Il. I,,

cees In) of equal length 0 where

(2) 8/2 <0< s
L = L{u | xkaJ )
L*= max{Lk:k=l.....n}
D, = D(u | xkaJ

.and A.k ths area of the support of u in the rectangle Lk x H. By Lemma 2.7
then
L <(8/n)i(l+h/ﬂo) Désa Dt
k= Ax Dy A Py

By Holder's inequality then

n m ﬂ3 n m 1[3 m } O 2/3 n 1/3
Z e Z AR EE (2 Ak) (Z Dk)
k=1 k=1 k=1 k=1

or

* The method of this proof is due to Professor Peter D. Lax (unpublished
communication). The author proved only a weaker result (which however
is still satisfactory for the present purpose) and not as elegantly.
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n n
< n
L Tk - L Tk -
k=1 k=1

Noting that by (2)

a = (8/mif (1+ /o) > (8/mF (1 + 2n/me)

and introducing this inequality into (3) we get (1).

Remarks.(i) Since the length ! does not o.cur explicitly in (1), the
latter remains valid even if I is serai-infirite or infinite,

(ii) The inequality (1) remains valid even if u (x + iy) is discon-

: e 13 = < < < .
tinuous on tlie lines x Xys Xoppeoer Xo (xo< X Seee SX SXgG

” "
g8 < min{xv-xv_l;v=l,..., k+lj'.

(iii) The requirement u(x + ih) = 0 (x real) is not essential. If only
u(x) = 0 is assumed, than by reflection on the line y = h the inequality

bl 1 L3

*
(4) L >
1671 + an/ms)® AD

zan . derived from the reinterpretation of (1).

2.9 Convergence of the minimizing sequence

Suppose tnat thc minimum problem III' or IV is wellposed for some
given A, A\, and m or w respectively, Then there is a sequence of functions

v, of J, such that
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’ - iv! . ‘L..
va inf \V[u].ueﬂJ-Jm
and
Wy )~ tnf (Wlul:ueJ}=
*v inf {Wlul :ue = Iy
respectively.

It will be shown that the sequence :wv} contains a subsequence which

converges pointwise tu an admissible function {, which is the solution of the
gee p

minimum-problem. We also show that | € IS,

(i) We start with the proof of the exister.e of a subsequence con-
verging to a function V¥(z) € J 48 . Steiner symmetrization with respect to
the imaginary axis of the time ({-plane does not increase the value of the
functionals V' or W, Infact, for any u €., Steiner-symmetrization yields
a function Gs(C) €S, and &s = N[ﬁ']. The Dirichlet-integral is not increased

-3
by Steiner-symmetrization., Hence with obvious notations

(1) o[, - n] =D&, -,

@  ofE,) ] <ofa] .

Furthermore from

ol

| £/ (¢) 128(C) a8 an ,

Zr»e—

Alal = [[ 1€ (0 12 a8 an
N

* See P.olya-Szegg (1951)
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it ie clear that
(3) Y (u)_] > L[uj. Alu,] > alul

since |£'(C)| is a non-increasing function of §. Hence combining Eqgs.

(1), (2), (3) accoraing to Eq. (1.2.7),
(4) v'lud < vIul,
(5) W lu ] < Wlul.

Now suppose that the solution of the restricted minimum-problem

defined by the functions sets p* = ’r‘[u']. N*= N[ua] is the function
viz) €7 # . Then we claim that v €& as well. In fact, if this were not
true, then symmetrization to the imaginary ( - axis would reduce the
values of the functionals V‘and W, leaving the already symmetrized
domains P*, N* unchanged. But this would contradict the assumption that
v(C) is a solution of the restricted minimum-problem defined by P’ and N*.
Therefore by (4), (5)

v'[v] < Vv'[ul ’

w [v] <Ww (ul

where v € J JS. It is no restriction of generality therefore to assume that

wne71‘$

to begin with,
The supremum of the values Twn] depends by the remark in Section
1. 6 only on the supremum of the values V'[vn]. W[wn] respectively, There-

fore there is a positive j, such that

T[wn] <j (n=1,2,...)
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Hence the sequence {vn}muu- the requirements of 2. 2, consequently the
functions ‘V(C) are equicontinuous. By Arzel}a.'o theorem therefore, they
contain a subsequence converging to a continuous ;(C). Since each WV( z)
belongs to S, so does ¥(z). We maintain that ¥(z) ¢ 4. Let ,cP[jl.
Since P[¥] is open, ¢, has a neighborhood o, = {C 2 g - Cll <e }
in P[;]. Suppose that

V(0 > 6(e) i o

a

Then, because of the equicontinuity of the functions ‘l’\,- there is an integer
Yo such that

V&) > £ 8(e) ino_,
and therefore

o, €PLy 1 for v 2>

Then by the theory of normal families, ¥({) is harmonic in Je . Since Cl
was arbitrary, ¥(C) is harmonic everywhere in P[\‘U\]. If Cl e N[§] together

with a neighborhood o ¢ 28 above, then similarly ¢ CN[@\,] for v>v,, and

€ 1’

Vv( z) satisfies

Vz Wv(z) ol in f(ce) = ‘|'c .

In case of IV, w =W In case of III'
w_ =(2/m) DLy ] <(2/m) max Tly ] < 2j/m .
\Y VAR ] v V-

We can select therefore a subsequence such that

Yk

Again only the subsequence is kept, and ‘3\, relabeled \bk. The functions
'k
T - 2
1, (2) = ¥ (2) - (0 /2) y

56



(2.9)

are harmonic and uniformly bounded in Tt and therefore again
*¢ 3
v @) = 4 (2) = w) - (/2 vt

o’
uniformly in O and | (z) is harmonic there. Theref>re the function ((z)

will satisfy
v ¥(2) = w

in Te? consequently everywhere in N[y]. By the lower semicontinuity of

the Dirichlet-integral

pfi, - 1] < um o|(3), -ﬂ]

2 b
[i.] V)
Dy v <dim D (v J
L. “ae LV M-
Combining these inequalities and considering Eq. (1.2.7),we find
(7 T(y3 < tim TLy ]
Neeo

which implies of course that {€ J.

(ii) We show‘that
o um o] o)
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